Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.102
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1367359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660488

RESUMO

Cryptosporidium parvum is a common cause of a zoonotic disease and a main cause of diarrhea in newborns. Effective drugs or vaccines are still lacking. Oocyst is the infective form of the parasite; after its ingestion, the oocyst excysts and releases four sporozoites into the host intestine that rapidly attack the enterocytes. The membrane protein CpRom1 is a large rhomboid protease that is expressed by sporozoites and recognized as antigen by the host immune system. In this study, we observed the release of CpRom1 with extracellular vesicles (EVs) that was not previously described. To investigate this phenomenon, we isolated and resolved EVs from the excystation medium by differential ultracentrifugation. Fluorescence flow cytometry and transmission electron microscopy (TEM) experiments identified two types of sporozoite-derived vesicles: large extracellular vesicles (LEVs) and small extracellular vesicles (SEVs). Nanoparticle tracking analysis (NTA) revealed mode diameter of 181 nm for LEVs and 105 nm for SEVs, respectively. Immunodetection experiments proved the presence of CpRom1 and the Golgi protein CpGRASP in LEVs, while immune-electron microscopy trials demonstrated the localization of CpRom1 on the LEVs surface. TEM and scanning electron microscopy (SEM) showed that LEVs were generated by means of the budding of the outer membrane of sporozoites; conversely, the origin of SEVs remained uncertain. Distinct protein compositions were observed between LEVs and SEVs as evidenced by their corresponding electrophoretic profiles. Indeed, a dedicated proteomic analysis identified 5 and 16 proteins unique for LEVs and SEVs, respectively. Overall, 60 proteins were identified in the proteome of both types of vesicles and most of these proteins (48 in number) were already identified in the molecular cargo of extracellular vesicles from other organisms. Noteworthy, we identified 12 proteins unique to Cryptosporidium spp. and this last group included the immunodominant parasite antigen glycoprotein GP60, which is one of the most abundant proteins in both LEVs and SEVs.


Assuntos
Cryptosporidium parvum , Vesículas Extracelulares , Proteínas de Protozoários , Esporozoítos , Vesículas Extracelulares/metabolismo , Cryptosporidium parvum/metabolismo , Esporozoítos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/análise , Microscopia Eletrônica de Transmissão , Animais , Criptosporidiose/parasitologia , Humanos , Proteoma/análise , Proteômica , Citometria de Fluxo
2.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473953

RESUMO

Cryptosporidium parvum is an apicomplexan parasite causing persistent diarrhea in humans and animals. Issuing from target-based drug development, calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs), with excellent efficacies in vitro and in vivo have been generated. Some BKIs including BKI-1748 share a core structure with similarities to the first-generation antiprotozoal drug quinine, which is known to exert notorious side effects. Unlike quinine, BKI-1748 rapidly interfered with C. parvum proliferation in the human colon tumor (HCT) cell line HCT-8 cells and caused dramatic effects on the parasite ultrastructure. To identify putative BKI targets in C. parvum and in host cells, we performed differential affinity chromatography with cell-free extracts from non-infected and infected HCT-8 cells using BKI-1748 and quinine epoxy-activated sepharose columns followed by mass spectrometry. C. parvum proteins of interest were identified in eluates from columns coupled to BKI-1748, or in eluates from both BKI-1748 and quinine columns. However, no C. parvum proteins could be identified binding exclusively to BKI-1748. In contrast, 25 BKI-1748-specific binding proteins originating from HCT-8 cells were detected. Moreover, 29 C. parvum and 224 host cell proteins were identified in both BKI-1748 as well as in quinine eluates. In both C. parvum and host cells, the largest subset of binding proteins was involved in RNA binding and modification, with a focus on ribosomal proteins and proteins involved in RNA splicing. These findings extend previous results, showing that BKI-1748 interacts with putative targets involved in common, essential pathways such as translation and RNA processing.


Assuntos
Antineoplásicos , Antiprotozoários , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Humanos , Quinina/farmacologia , Antiprotozoários/farmacologia , Antineoplásicos/farmacologia
3.
Sci Rep ; 14(1): 5498, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448682

RESUMO

The dependence of Cryptosporidium parasites on host cell metabolites suggests that the development of nutritional interventions to limit parasite proliferation should be feasible. Based on this concept, we are testing dietary interventions to affect the enterocytes' metabolism in a manner that limits intracellular multiplication of the parasite. We hypothesize that changes in the metabolic pathways encoded by the gastro-intestinal tract microbiota may restrict parasite proliferation. To identify taxonomic and metabolic features of the microbiota associated with severity of cryptosporidiosis, as determined by estimating oocyst output, we characterized the fecal microbiota from mice experimentally infected with Cryptosporidium parvum. To eliminate the confounding effect of the interaction between co-housed mice, as well as facilitate the identification of microbiota markers associated with severity of cryptosporidiosis, fecal microbiota from individually caged mice were analyzed. Variation partitioning analysis applied to 16S sequence data from 25 mice belonging to four experiments shows that experiment was by far the biggest source of microbiota variation. Severity of cryptosporidiosis explained a smaller, though significant, fraction of microbiota variation. Notably, this effect was significant in the pre-patent phase of the infection, before mice excreted oocysts. These results are consistent with the pre-patent intestinal microbiota having a modest, but measurable, effect on cryptosporidiosis.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Microbiota , Animais , Camundongos , Enterócitos , Oocistos
4.
Trends Parasitol ; 40(4): 280-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485578

RESUMO

Xu and colleagues recently revealed the critical role of Cryptosporidium's feeder organelle in nutrient uptake, showcasing the parasite's ability to harness glucose and glucose-6-phosphate from host cells. This illuminates the sophisticated energy metabolism and survival strategies of the parasite, highlighting potential therapeutic targets.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Criptosporidiose/parasitologia , Organelas/metabolismo , Metabolismo Energético
5.
Parasit Vectors ; 17(1): 146, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504274

RESUMO

BACKGROUND: Cryptosporidium parvum is an apicomplexan zoonotic parasite causing the diarrheal illness cryptosporidiosis in humans and animals. To invade the host intestinal epithelial cells, parasitic proteins expressed on the surface of sporozoites interact with host cells to facilitate the formation of parasitophorous vacuole for the parasite to reside and develop. The gp40 of C. parvum, named Cpgp40 and located on the surface of sporozoites, was proven to participate in the process of host cell invasion. METHODS: We utilized the purified Cpgp40 as a bait to obtain host cell proteins interacting with Cpgp40 through the glutathione S-transferase (GST) pull-down method. In vitro analysis, through bimolecular fluorescence complementation assay (BiFC) and coimmunoprecipitation (Co-IP), confirmed the solid interaction between Cpgp40 and ENO1. In addition, by using protein mutation and parasite infection rate analysis, it was demonstrated that ENO1 plays an important role in the C. parvum invasion of HCT-8 cells. RESULTS: To illustrate the functional activity of Cpgp40 interacting with host cells, we identified the alpha-enolase protein (ENO1) from HCT-8 cells, which showed direct interaction with Cpgp40. The mRNA level of ENO1 gene was significantly decreased at 3 and 24 h after C. parvum infection. Antibodies and siRNA specific to ENO1 showed the ability to neutralize C. parvum infection in vitro, which indicated the participation of ENO1 during the parasite invasion of HCT-8 cells. In addition, we further demonstrated that ENO1 protein was involved in the regulation of cytoplasmic matrix of HCT-8 cells during C. parvum invasion. Functional study of the protein mutation illustrated that ENO1 was also required for the endogenous development of C. parvum. CONCLUSIONS: In this study, we utilized the purified Cpgp40 as a bait to obtain host cell proteins ENO1 interacting with Cpgp40. Functional studies illustrated that the host cell protein ENO1 was involved in the regulation of tight junction and adherent junction proteins during C. parvum invasion and was required for endogenous development of C. parvum.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Animais , Cryptosporidium parvum/genética , Criptosporidiose/parasitologia , Esporozoítos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Membrana/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas Supressoras de Tumor/metabolismo
6.
Front Immunol ; 15: 1351427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318169

RESUMO

One of the leading causes of infectious diarrhea in newborn calves is the apicomplexan protozoan Cryptosporidium parvum (C. parvum). However, little is known about its immunopathogenesis. Using next generation sequencing, this study investigated the immune transcriptional response to C. parvum infection in neonatal calves. Neonatal male Holstein-Friesian calves were either orally infected (N = 5) or not (CTRL group, N = 5) with C. parvum oocysts (gp60 subtype IIaA15G2R1) at day 1 of life and slaughtered on day 7 after infection. Total RNA was extracted from the jejunal mucosa for short read. Differentially expressed genes (DEGs) between infected and CTRL groups were assessed using DESeq2 at a false discovery rate < 0.05. Infection did not affect plasma immunohematological parameters, including neutrophil, lymphocyte, monocyte, leucocyte, thrombocyte, and erythrocyte counts as well as hematocrit and hemoglobin concentration on day 7 post infection. The immune-related DEGs were selected according to the UniProt immune system process database and were used for gene ontology (GO) and pathway enrichment analysis using Cytoscape (v3.9.1). Based on GO analysis, DEGs annotated to mucosal immunity, recognizing and presenting antigens, chemotaxis of neutrophils, eosinophils, natural killer cells, B and T cells mediated by signaling pathways including toll like receptors, interleukins, tumor necrosis factor, T cell receptor, and NF-KB were upregulated, while markers of macrophages chemotaxis and cytosolic pattern recognition were downregulated. This study provides a holistic snapshot of immune-related pathways induced by C. parvum in calves, including novel and detailed feedback and feedforward regulatory mechanisms establishing the crosstalk between innate and adaptive immune response in neonate calves, which could be utilized further to develop new therapeutic strategies.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Fenômenos do Sistema Imunitário , Animais , Bovinos , Masculino , Humanos , Cryptosporidium parvum/genética , Cryptosporidium/genética , Transcriptoma , Doenças dos Bovinos/genética , Mucosa Intestinal , Fator de Necrose Tumoral alfa/genética , Imunidade Adaptativa
7.
Vet Immunol Immunopathol ; 269: 110728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340536

RESUMO

This work aims to: (1) elucidate the immune response exhibited by CD4 + and CD8 + T lymphocyte cells in response to various infectious agents in calves suffering with neonatal diarrhea; and (2) determine and investigate the association between serum selenium levels and T lymphocyte subtypes in neonatal calves afflicted with neonatal diarrhea and infected with various infectious agents. The study encompassed a cohort of 50 calves, encompassing both sexes and various breeds, within the neonatal age range (1-28 days old). Subdivided into distinct groups, the calves were categorized based on the causative agents of neonatal diarrhea, including Rotavirus (n = 10), Cryptosporidium parvum (C.parvum) (n = 10), Coronavirus (n = 5), Rotavirus+C.parvum (n = 5), and a Control group (n = 20). Blood samples were meticulously obtained from the vena jugularis of all animals utilizing specific techniques-8 ml in tubes devoid of anticoagulant and 3 ml in blood collection tubes containing EDTA. Serum selenium levels were analyzed by ICP-MS. Flow Cytometry device was used to determine CD4 + and CD8 +T lymphocyte levels. In this study, although there was no statistically significant difference in serum selenium levels between all study groups, it was found that the selenium level in the control group was not sufficient. CD4 T lymphocyte levels, the rotavirus+C.parvum group exhibited a statistically significant elevation compared to the coronavirus group. Regarding CD8 + T lymphocyte levels, the coronavirus group demonstrated a statistically significant increase when compared to the control group. In intragroup analyses of CD8 + T lymphocyte levels, the coronavirus group exhibited a significant elevation compared to the rotavirus group, C.parvum group, and the C.parvum + Rotavirus group. A significant negative correlation was detected between selenium levels and CD4 + T lymphocytes, while no correlation was found between CD8 + T lymphocytes. Fibrinogen concentration exhibited statistical significance, being higher in the Rotavirus group (p < 0.008) compared to the control group, in the C.parvum group (p < 0.004) compared to the control group, and in the Coronavirus group (p < 0.001) compared to the control group. The leukocyte count demonstrated statistical significance, being higher in the Rotavirus group compared to the control group (p < 0.001), in the Rotavirus+C.parvum group compared to the control group (p < 0.002), and in the Coronavirus group compared to the control group (p < 0.011). In conclusion, the data derived from this study illuminate discernible disparities in CD4 + and CD8 + T lymphocyte immune responses, contingent upon the specific etiological agent associated with neonatal diarrhea. Furthermore, the study underscores the importance of considering selenium deficiency as a relevant factor in calves affected by neonatal diarrhea.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Selênio , Humanos , Masculino , Feminino , Animais , Bovinos , Imunofenotipagem/veterinária , Diarreia/veterinária , Linfócitos T CD4-Positivos , Fezes
8.
Water Res ; 254: 121333, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402753

RESUMO

The IOWA strain of Cryptosporidium parvum is widely used in studies of the biology and detection of the waterborne pathogens Cryptosporidium spp. While several lines of the strain have been sequenced, IOWA-II, the only reference of the original subtype (IIaA15G2R1), exhibits significant assembly errors. Here we generated a fully assembled genome of IOWA-CDC of this subtype using PacBio and Illumina technologies. In comparative analyses of seven IOWA lines maintained in different laboratories (including two sequenced in this study) and 56 field isolates, IOWA lines (IIaA17G2R1) with less virulence had mixed genomes closely related to IOWA-CDC but with multiple sequence introgressions from IOWA-II and unknown lineages. In addition, the IOWA-IIaA17G2R1 lines showed unique nucleotide substitutions and loss of a gene associated with host infectivity, which were not observed in other isolates analyzed. These genomic differences among IOWA lines could be the genetic determinants of phenotypic traits in C. parvum. These data provide a new reference for comparative genomic analyses of Cryptosporidium spp. and rich targets for the development of advanced source tracking tools.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Cryptosporidium parvum/genética , Cryptosporidium/genética , Genômica , Virulência
9.
Parasit Vectors ; 17(1): 65, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360646

RESUMO

BACKGROUND: Cryptosporidium spp. are common protozoa causing diarrhea in humans and animals. There are currently only one FDA-approved drug and no vaccines for cryptosporidiosis, largely due to the limited knowledge of the molecular mechanisms involved in the invasion of the pathogens. Previous studies have shown that GP60, which is cleaved into GP40 and GP15 after expression, is an immunodominant mucin protein involved in the invasion of Cryptosporidium. The protein is highly O-glycosylated, and recombinant proteins expressed in prokaryotic systems are non-functional. Therefore, few studies have investigated the function of GP40 and GP15. METHODS: To obtain recombinant GP40 with correct post-translational modifications, we used CRISPR/Cas9 technology to insert GP40 and GP15 into the UPRT locus of Toxoplasma gondii, allowing heterologous expression of Cryptosporidium proteins. In addition, the Twin-Strep tag was inserted after GP40 for efficient purification of GP40. RESULTS: Western blotting and immunofluorescent microscopic analyses both indicated that GP40 and GP15 were stably expressed in T. gondii mutants. GP40 localized not only in the cytoplasm of tachyzoites but also in the parasitophorous vacuoles, while GP15 without the GPI anchor was expressed only in the cytoplasm. In addition, a large amount of recTgGP40 was purified using Strep-TactinXT supported by a visible band of ~ 50 kDa in SDS-PAGE. CONCLUSIONS: The establishment of a robust and efficient heterologous expression system of GP40 in T. gondii represents a novel approach and concept for investigating Cryptosporidium mucins, overcoming the limitations of previous studies that relied on unstable transient transfection, which involved complex steps and high costs.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Toxoplasma , Humanos , Animais , Cryptosporidium parvum/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Mucinas/metabolismo , Glicoproteínas
10.
PLoS Pathog ; 20(2): e1011992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416794

RESUMO

Recent advances in the in vitro cultivation of Cryptosporidium parvum using hollow fiber bioreactor technology (HFB) have permitted continuous growth of parasites that complete all life cycle stages. The method provides access to all stages of the parasite and provides a method for non-animal production of oocysts for use in clinical trials. Here we examined the effect of long-term (>20 months) in vitro culture on virulence-factors, genome conservation, and in vivo pathogenicity of the host by in vitro cultured parasites. We find low-level sequence variation that is consistent with that observed in calf-passaged parasites. Further using a calf model infection, oocysts obtained from the HFB caused diarrhea of the same volume, duration and oocyst shedding intensity as in vivo passaged parasites.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Cryptosporidium parvum/genética , Virulência , Criptosporidiose/parasitologia , Oocistos , Genômica , Fezes
11.
mBio ; 15(2): e0315823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38265238

RESUMO

The zoonotic Cryptosporidium parvum is a global contributor to infantile diarrheal diseases and opportunistic infections in immunocompromised or weakened individuals. Like other apicomplexans, it possesses several specialized secretory organelles, including micronemes, rhoptry, and dense granules. However, the understanding of cryptosporidial micronemal composition and secretory pathway remains limited. Here, we report a new micronemal protein in C. parvum, namely, thrombospondin (TSP)-repeat domain-containing protein-4 (CpTSP4), providing insights into these ambiguities. Immunostaining and enzyme-linked assays show that CpTSP4 is prestored in the micronemes of unexcysted sporozoites but secreted during sporozoite excystation, gliding, and invasion. In excysted sporozoites, CpTSP4 is also distributed on the two central microtubules unique to Cryptosporidium. The secretion and microtubular distribution could be completely blocked by the selective kinesin-5 inhibitors SB-743921 and SB-715992, resulting in the accumulation of CpTSP4 in micronemes. These support the kinesin-dependent microtubular trafficking of CpTSP4 for secretion. We also localize γ-tubulin, consistent with kinesin-dependent anterograde trafficking. Additionally, recombinant CpTSP4 displays nanomolar binding affinity to the host cell surface, for which heparin acts as one of the host ligands. A novel heparin-binding motif is identified and validated biochemically for its contribution to the adhesive property of CpTSP4 by peptide competition assays and site-directed mutagenesis. These findings shed light on the mechanisms of intracellular trafficking and secretion of a cryptosporidial micronemal protein and the interaction of a TSP-family protein with host cells.IMPORTANCECryptosporidium parvum is a globally distributed apicomplexan parasite infecting humans and/or animals. Like other apicomplexans, it possesses specialized secretory organelles in the zoites, in which micronemes discharge molecules to facilitate the movement and invasion of zoites. Although past and recent studies have identified several proteins in cryptosporidial micronemes, our understanding of the composition, secretory pathways, and domain-ligand interactions of micronemal proteins remains limited. This study identifies a new micronemal protein, namely, CpTSP4, that is discharged during excystation, gliding, and invasion of C. parvum sporozoites. The CpTSP4 secretion depends on the intracellular trafficking on the two Cryptosporidium-unique microtubes that could be blocked by kinesin-5/Eg5 inhibitors. Additionally, a novel heparin-binding motif is identified and biochemically validated, which contributes to the nanomolar binding affinity of CpTSP4 to host cells. These findings indicate that kinesin-dependent microtubular trafficking is critical to CpTSP4 secretion, and heparin/heparan sulfate is one of the ligands for this micronemal protein.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Animais , Cryptosporidium parvum/metabolismo , Criptosporidiose/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Esporozoítos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Heparina/metabolismo
12.
Vet Parasitol Reg Stud Reports ; 47: 100964, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38199683

RESUMO

Cryptosporidium is a protozoan parasite with worldwide distribution, infecting a wide range of hosts with some zoonotic species. Calves have been identified as one of the most common reservoirs of this parasite. However, little is known about the genetics of Cryptosporidium in calves in Portugal. This study aimed to molecularly characterize infections of Cryptosporidium in pre-weaned calves from the Lisbon and Tagus Valley (LTV) in Portugal. Fifty-two samples were collected from calves from eight dairy and two beef farms in LTV, Portugal. Cryptosporidium oocysts were detected by Modified Ziehl-Neelsen staining (MZN) and direct immunofluorescent assay (DFA). MZN and DFA revealed the presence of Cryptosporidium oocysts in 40.4% (21/52) and 67.3% (35/52) samples, respectively. Positive samples were analyzed by PCR-RFLP of the 18 s rRNA gene for species identification. DNA amplification of the 18S rRNA gene was successful for 88.6% (31/35) of samples. Cryptosporidium parvum was identified in 96.8% (30/31) of the samples, and from one sample Cryptosporidium bovis was identified. Cryptosporidium parvum positive samples were subtyped by sequencing the PCR product of a partial fragment of the 60 kDa glycoprotein (gp60) gene. Subtype analysis of the C. parvum isolates revealed that all isolates belonged to subtype family IIa. Four subtypes were recognized within this subtype family, including the hyper-transmissible IIaA15G2R1 subtype that is the most frequently reported worldwide (27/30), IIaA14G2R1 (1/30), IIaA16G2R1 (1/30) and IIaA19G2R1 (1/30). To our knowledge, this is the first report of C. bovis, and C. parvum subtypes IIaA14G2R1 and IIaA19G2R1 in cattle in LTV, Portugal. The presence of the zoonotic C. parvum subtype in this study suggests that pre-weaned calves are likely to be a significant reservoir of zoonotic C. parvum, highlighting the importance of animal-to-human infection transmission risk. Further molecular studies are required to better understand the epidemiology of cryptosporidiosis in Portugal.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Animais , Bovinos , Cryptosporidium/genética , Portugal/epidemiologia , Criptosporidiose/epidemiologia , Cryptosporidium parvum/genética , Meio Ambiente , Oocistos , Doenças dos Bovinos/epidemiologia
13.
Nat Commun ; 15(1): 380, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191884

RESUMO

Cryptosporidium parvum is an obligate intracellular parasite with a highly reduced mitochondrion that lacks the tricarboxylic acid cycle and the ability to generate ATP, making the parasite reliant on glycolysis. Genetic ablation experiments demonstrated that neither of the two putative glucose transporters CpGT1 and CpGT2 were essential for growth. Surprisingly, hexokinase was also dispensable for parasite growth while the downstream enzyme aldolase was required, suggesting the parasite has an alternative way of obtaining phosphorylated hexose. Complementation studies in E. coli support a role for direct transport of glucose-6-phosphate from the host cell by the parasite transporters CpGT1 and CpGT2, thus bypassing a requirement for hexokinase. Additionally, the parasite obtains phosphorylated glucose from amylopectin stores that are released by the action of the essential enzyme glycogen phosphorylase. Collectively, these findings reveal that C. parvum relies on multiple pathways to obtain phosphorylated glucose both for glycolysis and to restore carbohydrate reserves.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Cryptosporidium parvum/genética , Glucose , Fosfatos , Escherichia coli , Hexoquinase
14.
Proc Natl Acad Sci U S A ; 121(1): e2313210120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147547

RESUMO

Parasites and their hosts are engaged in reciprocal coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium, genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach, multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing Cryptosporidium parvum, a parasite of cattle and humans, and Cryptosporidium tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward-genetic analysis of parasite biology and host specificity.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Cruzamentos Genéticos , Criptosporidiose/parasitologia , Cryptosporidium/genética , Cryptosporidium parvum/genética , Estágios do Ciclo de Vida
15.
Acta Trop ; 249: 107057, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913972

RESUMO

Cryptosporidium parvum could regulate the expression of microRNAs of epithelial cells to facilitate its intracellular propagation. MiR-4521 has been reported to play an important role during the development and progression of tumors and infectious diseases by regulating cell proliferation, apoptosis, and autophagy. However, the implication of miR-4521 during C. parvum infection was still unknown. In this study, the expression of miR-4521 was found to be upregulated in HCT-8 cells infected with C. parvum from 8 h post-infection (pi) to 48 hpi, and its upregulation would be related with the TLR/NF-κB signal pathway during C. parvum infection. One potential target of miR-4521, foxm1, was down-regulated in HCT-8 cells from 24 hpi to 48 hpi, and the expression of foxm1 was negatively regulated by miR-4521. The target relationship between miR-4521 and foxm1 was further validated by using dual luciferase reporter assay. Further studies showed that miR-4521 promoted the propagation of C. parvum in HCT-8 cells through targeting foxm1 by regulating BCL2-mediating cell apoptosis. These results contribute to further understanding of the regulatory mechanisms of host miRNAs during Cryptosporidium infection.


Assuntos
Apoptose , Criptosporidiose , Cryptosporidium parvum , Proteína Forkhead Box M1 , MicroRNAs , Humanos , Apoptose/genética , Criptosporidiose/genética , Criptosporidiose/patologia , Cryptosporidium parvum/genética , MicroRNAs/genética , Proteína Forkhead Box M1/genética
16.
Sci Rep ; 13(1): 22106, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092824

RESUMO

Among the causative agents of neonatal diarrhoea in calves, two of the most prevalent are bovine coronavirus (BCoV) and the intracellular parasite Cryptosporidium parvum. Although several studies indicate that co-infections are associated with greater symptom severity, the host-pathogen interplay remains unresolved. Here, our main objective was to investigate the modulation of the transcriptome of HCT-8 cells during single and co-infections with BCoV and C. parvum. For this, HCT-8 cells were inoculated with (1) BCoV alone, (2) C. parvum alone, (3) BCoV and C. parvum simultaneously. After 24 and 72 h, cells were harvested and analyzed using high-throughput RNA sequencing. Following differential expression analysis, over 6000 differentially expressed genes (DEGs) were identified in virus-infected and co-exposed cells at 72 hpi, whereas only 52 DEGs were found in C. parvum-infected cells at the same time point. Pathway (KEGG) and gene ontology (GO) analysis showed that DEGs in the virus-infected and co-exposed cells were mostly associated with immune pathways (such as NF-κB, TNF-α or, IL-17), apoptosis and regulation of transcription, with a more limited effect exerted by C. parvum. Although the modulation observed in the co-infection was apparently dominated by the virus, over 800 DEGs were uniquely expressed in co-exposed cells at 72 hpi. Our findings provide insights on possible biomarkers associated with co-infection, which could be further explored using in vivo models.


Assuntos
Coinfecção , Coronavirus Bovino , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Bovinos , Cryptosporidium parvum/genética , Transcriptoma , Criptosporidiose/parasitologia , Cryptosporidium/genética , Coronavirus Bovino/genética
17.
Front Cell Infect Microbiol ; 13: 1281440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965266

RESUMO

Cryptosporidium parvum is a protozoan parasite and one of the leading causes of gastroenteritis in the world, primarily affecting very young children and immunocompromised patients. While infection is usually self-limiting, it can become chronic and even lethal in these vulnerable populations, in whom Cryptosporidium treatments are generally ineffective, due to their acting in concert with a functioning immune system. Here, we describe a case of chronic cryptosporidiosis in a European child with severe CD40L immunodeficiency infected with Cryptosporidium parvum of the IIa20G1 subgenotype, a lineage which has thus far only ever been described in the Middle East. After years of on-off treatment with conventional and non-conventional anti-parasitic drugs failed to clear parasitosis, we performed targeted metagenomics to observe the bacterial composition of the patient's gut microbiota (GM), and to evaluate fecal microbiota transplantation (FMT) as a potential treatment option. We found that C. parvum infection led to significant shifts in GM bacterial composition in our patient, with consequent shifts in predicted intestinal functional signatures consistent with a state of persistent inflammation. This, combined with the patient's poor prognosis and increasing parasitic burden despite many rounds of anti-parasitic drug treatments, made the patient a potential candidate for an experimental FMT procedure. Unfortunately, given the many comorbidities that were precipitated by the patient's immunodeficiency and chronic C. parvum infection, FMT was postponed in favor of more urgently necessary liver and bone marrow transplants. Tragically, after the first liver transplant failed, the patient lost his life before undergoing FMT and a second liver transplant. With this case report, we present the first description of how cryptosporidiosis can shape the gut microbiota of a pediatric patient with severe immunodeficiency. Finally, we discuss how both our results and the current scientific literature suggest that GM modulations, either by probiotics or FMT, can become novel treatment options for chronic Cryptosporidium infection and its consequent complications, especially in those patients who do not respond to the currently available anti-parasitic therapies.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Microbioma Gastrointestinal , Síndromes de Imunodeficiência , Parasitos , Animais , Humanos , Criança , Pré-Escolar , Criptosporidiose/complicações , Criptosporidiose/parasitologia , Ligante de CD40 , Cryptosporidium/genética , Intestinos/microbiologia , Síndromes de Imunodeficiência/complicações , Bactérias/genética , Propionibacterium acnes
18.
BMC Vet Res ; 19(1): 216, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858196

RESUMO

BACKGROUND: Cryptosporidium parvum is a protozoan parasite of medical and veterinary importance that causes neonatal diarrhea in many vertebrate hosts. In this study, we evaluated the efficacy of an affinity-purified antigen as a C. parvum vaccine candidate using ileal and liver tissues of experimentally infected neonatal mice by immunohistochemical profiling and immune scoring of CD4+, CD8+, Caspase-3, and nuclear factor kappa B (NF-κB). This vaccine was prepared from the C. parvum oocysts antigen using immune affinity chromatography with cyanogen bromide-activated Sepharose-4B beads. METHODS: Thirty neonatal mice were divided into three groups (10 mice/group): (1) non-immunized non-infected, (2) non-immunized infected (using gastric tubes with a single dose of 1 × 105 of C. parvum oocysts in 250 µl PBS solution 1 h before a meal) and (3) immunized (twice with 40 µg/kg of purified C. parvum antigen at 2-week intervals and then infected with 1 × 105 C. parvum oocysts simultaneously with the second group). After euthanizing the animals on the 10th day, post-infection, their ileal and liver tissues were collected and prepared for immunohistochemistry (IHC) staining to detect CD4+, CD8+, Caspase-3, and NF-κB levels, which are indicators for T helper cells, cytotoxic T cells, apoptosis, and inflammation, respectively. RESULTS: The IHC results showed that CD4+, CD8+, Caspase-3, and NF-κB expression varied significantly (P < 0.001) in both organs in all the groups. We also recorded high CD4+ levels and low CD8+ expression in the non-immunized non-infected mice tissues, while the opposite was observed in the non-immunized infected mice tissues. In the immunized infected mice, the CD4+ level was higher than CD8 + in both organs. While the Caspase-3 levels were higher in the ileal tissue of non-immunized infected than immunized infected mice ileal tissues, the reverse was seen in the liver tissues of both groups. Furthermore, NF-κB expression was higher in the liver tissues of non-immunized infected mice than in immunized infected mice tissues. Therefore, the IHC results and immune-scoring program revealed a significant difference (P < 0.001) in the CD4+, CD8+, Caspase-3, and NF-κB expression levels in both ileal and liver tissues of all mice groups, which might be necessary for immunomodulation in these tissues. CONCLUSIONS: The improvement observed in the immunized infected mice suggests that this vaccine candidate might protect against cryptosporidiosis.


Assuntos
Antígenos CD4 , Antígenos CD8 , Caspase 3 , Criptosporidiose , NF-kappa B , Vacinas Protozoárias , Animais , Camundongos , Caspase 3/biossíntese , Caspase 3/imunologia , Antígenos CD4/biossíntese , Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD8/biossíntese , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/imunologia , Criptosporidiose/prevenção & controle , Criptosporidiose/parasitologia , Cryptosporidium , Cryptosporidium parvum/imunologia , Imuno-Histoquímica , NF-kappa B/biossíntese , NF-kappa B/imunologia , Vacinas Protozoárias/uso terapêutico , Vacinas
19.
Mikrobiyol Bul ; 57(4): 660-666, 2023 Oct.
Artigo em Turco | MEDLINE | ID: mdl-37885393

RESUMO

Cow's milk, which is one of today's most important food sources, can be a reservoir for many pathogens that create a risk to public health. One of these pathogens is Cryptosporidium parvum. The oocysts of C.parvum, an obligate intracellular parasite, cause infection when ingested orally. The oocysts scattered around with the feces of infected cows or calves can contaminate raw milk and this is frequently seen in dairy farms. The aim of this study was to investigate the viability of C.parvum by propidium monoazide (PMA)-quantitative polymerase chain reaction (qPCR) method after heat treatment applied to contaminated raw cow's milk. For the study, 50 ml of unpasteurized cow's milk was contaminated with 5 X 105 C.parvum oocysts and portioned into 1.5 ml microcentrifuge tubes. Three groups, namely the control group, pasteurization group and boiling group were formed. No warming procedure was applied to the control group. In the pasteurization group, the milks in microcentrifuge tubes were poured into the wells of the dry block heater set to 71.7 °C and incubated for five seconds. At the end of the period, the milks were transferred to the wells of the cold metal tube, which was removed at -20 °C with the help of a micropipette, and incubated for five seconds. The milks in the boiling group were incubated for two minutes in a dry block heater set to 95 °C. After the heat treatment, the milks in microcentrifuge tubes were transferred to 10 ml centrifuge tubes, PBS was added to make the final volume 10 ml, and centrifuged at 4000 rpm for 20 minutes. After this process was repeated twice, 400 µl of PBS was added to the precipitate remaining at the bottom, and the precipitate was homogenized. One sample of each group was applied with PMA, while PMA was not applied to the other sample. PMA-applied samples were incubated for five minutes at room temperature and in the dark, and then exposed to UV light for five minutes in the device with cooling feature. The oocysts were collected by centrifugation at 5000 g for five minutes. After DNA isolation from oocysts, SYBR Green real time PCR (Rt-PCR) was performed using primers amplifying the COWP gene region. As a result of SYBR Green Rt-PCR, the mean Ct values of the control without PMA, pasteurization and boiling groups were determined as 25 ± 1.24, 23 ± 0.98 and 26 ± 1.03, respectively. While no peak was obtained in the boiling group after PMA application, the mean Ct values of the control and pasteurization groups were 28 ± 1.38 and 31 ± 1.46, respectively. As a result, it was concluded that live C.parvum cysts in milk could be detected by PMA-qPCR method and live oocysts could be found in pasteurized milk.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Feminino , Animais , Bovinos , Leite , Cryptosporidium parvum/genética , Pasteurização , Oocistos
20.
Sci Rep ; 13(1): 17755, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853002

RESUMO

Cryptosporidium is one of the causative parasitic agents that causes gastrointestinal diseases in calves. The parasite poses a zoonotic risk to immunocompromised individuals and children. Thus, this study aimed to determine the prevalence of Cryptosporidium infection in calves in three Egyptian governorates situated in Nile Delta and assess the associated risk factors. The Cryptosporidium oocysts were detected in 81 out of 430 calves (18.84%). In addition, the univariant analysis showed that age, feeding source, hygienic status, presence of diarrhea and contact with other animals were significantly (P < 0.05) associated with Cryptosporidium prevalence in calves. Furthermore, the risk factors related with Cryptosporidium prevalence were age (OR 1.96, 95%CI 0.97-3.94), feeding on milk and pasture (OR 2.07, 95%CI 1.15-3.72), poor hygienic condition (OR 2.25, 95%CI 1.28-3.94), presence of diarrhea (OR 2.47, 95%CI 1.23-4.96) and contact with other domestic animals (OR 2.08, 95%CI 1.24-3.50). In addition, the PCR assay targeting 18srRNA showed that the most prevalent species among calves was C. parvum. Although additional researches are required to understand the most effective steps that farmers and veterinary professionals should take to decrease the occurrence of Cryptosporidium infection.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Criança , Animais , Humanos , Bovinos , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/genética , Egito/epidemiologia , Prevalência , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Fezes/parasitologia , Fatores de Risco , Diarreia/epidemiologia , Diarreia/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...